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Abstract: Vector-boson fusion processes constitute an important class of reactions at

hadron colliders, both for signals and backgrounds of new physics in the electroweak inter-

actions. We consider what is commonly referred to as W+W− production via vector-boson

fusion (with subsequent leptonic decay of the W s), or, more precisely, e+νe µ−ν̄µ + 2 jets

production in proton-proton scattering, with all resonant and non-resonant Feynman dia-

grams and spin correlations of the final-state leptons included, in the phase-space regions

which are dominated by t-channel electroweak-boson exchange. We compute the next-to-

leading order QCD corrections to this process, at order α6αs. The QCD corrections are

modest, changing total cross sections by less than 10%. Remaining scale uncertainties are

below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to

demonstrate these features for cross sections within typical vector-boson-fusion acceptance

cuts. Modest corrections are also found for distributions.
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1. Introduction

Vector-boson fusion (VBF) processes form a particularly interesting class of scattering

events from which one hopes to gain insight into the dynamics of electroweak symmetry

breaking. The most prominent example is Higgs boson production, that is the process

qq→ qqH, which can be viewed as quark scattering via t-channel exchange of a weak boson,

with the Higgs boson radiated off the W or Z propagator. Alternatively, one may view

this process as two weak bosons fusing to form the Higgs boson. Higgs boson production

via VBF has been studied intensively as a tool for Higgs boson discovery [1, 2] and the

measurement of Higgs boson couplings [3] in pp collisions at the CERN Large Hadron

Collider (LHC). The two scattered quarks in a VBF process are usually visible as forward

jets and greatly help to distinguish these Hjj events from backgrounds.

An important background to Higgs searches at the LHC, in particular to the search

for H →W+W− decays in VBF production, is caused by continuum W+W− production

in VBF. The qq→ qq W+W− process forms an irreducible background in Higgs searches

which ranges between 15% and 3.5% of the Higgs signal, for Higgs boson masses between

115 and 160 GeV [4]. In fact, the kinematic distributions of the two tagging jets, the

suppression of gluon radiation in the central region (due to the t-channel color-singlet

exchange nature of the VBF process) and many features of the leptonic final state are

identical to the H →W+W− signal. When trying to determine Higgs boson couplings, the

qq→ qq W+W− cross section must be known precisely, which is achieved by calculating the

next-to-leading order (NLO) QCD corrections. Such a calculation becomes more crucial

when one contemplates using weak-boson scattering processes, and, more precisely, the
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absence of strong enhancements in these cross sections, as a probe for the existence of

a light Higgs boson [5, 6]. Here the knowledge of NLO QCD corrections is essential in

order to distinguish the enhancement from strong weak-boson scattering from possible

enhancements due to higher order QCD effects.

In two recent papers, the calculation of the NLO QCD corrections was presented for

two simpler vector-boson-fusion processes: the Hjj signal cross section [7] and the cross

sections for Zjj and Wjj production [8]. Both calculations were turned into fully-flexible

parton-level Monte Carlo programs. We here extend this work and describe the calculation

and first results for the NLO QCD corrections to W+W−jj production via VBF.

Weak-boson scattering was first considered in the framework of the effective W ap-

proximation, where the incoming weak bosons are treated as on-shell particles [9]. This

approximation does not provide a reliable prediction for the kinematical distributions of

the forward and backward jets which are the main characteristic of vector boson fusion pro-

cesses [10]. Calculations of the full qq→ qq W+W− processes, first without W decay [11, 12]

and then including the full spin correlations of the W decay products in the narrow-width

approximation [13], have been available for more than a decade. Within this latter ap-

proximation, also the real gluon emission contributions, i.e. the O(α4αs) cross sections

for the pp→W+W−jjj subprocesses, with full spin correlations of the W decay leptons,

were determined [14]. Very recently, a partonic-level Monte Carlo for all the processes

q1q2 → q3q4q5q6lν, with exact matrix elements at O(α6), has become available [15].

In this paper, we consider the proton-proton scattering process pp→ e+νe µ−ν̄µ jj(j)X,

with all resonant and non-resonant Feynman diagrams and spin correlations of the final-

state leptons included, at order α6αs. Since this process is very difficult to detect above

QCD backgrounds, except in phase-space regions which are completely dominated by t-

channel electroweak (EW) boson exchange, we only consider t-channel contributions, as

explained in section 2.1. In the rest of the paper, we will refer also to this approximated

process as EW W+W−jj production. Electroweak gauge invariance requires that, beyond

vector-boson scattering graphs, also the direct emission of the produced (virtual) W s off

the quark lines be considered. Several examples are depicted in figure 1, which shows the

basic Feynman-graph topologies which need to be considered for our calculation at tree

level, for the particular subprocess uc→uc e+νe µ−ν̄µ. Real emission contributions (includ-

ing quark-gluon initiated subprocesses) are generated by attaching an external gluon in all

possible ways on the two quark lines in figure 1. For the virtual corrections, we only need

to consider Feynman graphs with a virtual gluon attached to a single quark line: gluon

exchange between the up- and the charm-quark line leads to a color-octet state for the

external uū or cc̄ pair, which cannot interfere with the color-singlet structure at tree level.

As a result, the virtual contributions contain, at most, pentagon diagrams, which arise e.g.

by connecting the incoming and the outgoing up-quark in figure 1 (a) with a virtual gluon.

The other graphs in figure 1 lead to box, vertex, or quark self-energy corrections, and these

latter classes have already been encountered in ref. [8].

Many aspects of the present calculation parallel this previous work. The cancella-

tion of collinear and soft divergences for generic VBF processes was described in detail in

ref. [7] and need not be repeated here, since it can be applied verbatim for the case at
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hand. The calculation of vertex and box corrections was needed for the case of W and

Z production [8] already, and, thus, these aspects of the virtual corrections need a brief

review only. This review is provided in section 2, where we describe the details of our calcu-

lation and the approximations with regard to crossed diagrams in the presence of identical

quark flavors. As in the previous work, we regularize the loop integrals via dimensional

reduction and separate the virtual amplitudes into 1/ε2 and 1/ε terms, which multiply the

Born amplitude, and remaining finite terms, which are then calculated numerically, using

the helicity-amplitude techniques of ref. [16]. A major concern here is the numerically

stable and fast evaluation of the pentagon graphs. We make use of Ward identities and

map large fractions of the pentagon contributions onto more easily evaluable four-point

functions. Another important feature is the systematic use of “leptonic tensors” which

describe groups of purely electroweak subdiagrams.

In section 3, we describe the numerous consistency tests which we have performed,

ranging from comparison to code generated by MadGraph [17] for the tree-level amplitudes

to gauge invariance tests. In addition, we present the properties of our numerical Monte

Carlo program and how we have dealt with the gauge invariant handling of finite W/Z

widths, the singularities for incoming photons and the choice of physical parameters. We

then use this Monte Carlo program to produce first results for EW W+W−jj production at

the LHC. Of particular concern is the scale dependence of the NLO results, which provides

an estimate for the residual theoretical error of our cross-section calculations. We discuss

the scale dependence and the size of the radiative corrections for various distributions in

section 4. Conclusions are given in section 5.

2. Elements of the calculation

Our goal is the calculation of EW W+W−jj production cross sections with NLO QCD

accuracy in phase-space regions which are typical for vector-boson fusion. This implies

that some electroweak contributions, like triple gauge boson production (pp→W+W−V

with V →jj), can safely be neglected. These approximations will be specified below. Also,

we make use of the general structure of NLO QCD corrections to VBF processes: it is

sufficient to specify the contributions to the Born, the real-radiation and virtual amplitudes

which enter the cross section expressions of ref. [7]. In this section, we describe how these

contributions have been computed, the approximations used throughout this calculation

and some technical details.

2.1 Tree-level contribution and approximations

The Feynman diagrams contributing to pp→ jj e+νe µ−ν̄µ, where both resonant and non-

resonant processes are fully considered, can be grouped into six classes which are separately

gauge invariant. The first group of two, which consists of the VBF processes considered in

this paper, is characterized by t-channel neutral-current (NC) and charged-current (CC)

exchange between the two scattering quark lines. The other four classes correspond to u-

and s-channel exchange. The NC and CC labels are assigned depending on the external
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Figure 1: The six Feynman-graph topologies contributing to the Born process uc→uc e+νe µ−ν̄µ,

a template for neutral-current processes. Diagrams analogous to (a), (b), (e) and (f), with vector-

boson emission off the lower quark line, are not shown.

quark flavors: the incoming and outgoing quark charges on each quark line coincide for a

neutral current process and differ by one unit of |e| for a charged current process.

For each neutral-current process, and in the unitary gauge which we use throughout,

there are 181 Feynman graphs, which can be grouped into six distinct topologies. Generic

diagrams for each of the topologies (a) to (f) are shown in figure 1 for the specific subprocess

uc→ uc e+νe µ−ν̄µ. They correspond to the following configurations:

(a) Two virtual W bosons are emitted from the same quark line and in turn decay

leptonically.

(b) A virtual γ or Z boson (V ) with subsequent leptonic decay is emitted from either

quark line. The tree-level expression for the sub-amplitude V → e+νe µ−ν̄µ is given
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Figure 2: Diagrams contributing to the scattering amplitude T αβ

W+V
, depicted in figure 1 (e), that

describe the tree-level subprocess W+V →e+νe, where V is a γ or a Z vector boson, and α and β

are the tensor indices carried by the charged and neutral vector bosons, respectively.

by the tensor Γα
V , where α is the tensor index carried by the vector boson.

(c) The leptonically-decaying W bosons are emitted from two different quark lines.

(d) Vector-boson fusion in the t-channel gives rise to the sub-amplitude V V → e+νe µ−ν̄µ,

which is characterized by the tensor Tαβ
V V . The tensor indices of the scattering V

bosons are indicated with α and β.

(e) The leptons are produced by an external W− boson emitted from a quark line and a

W+V → e+νe fusion process in the t-channel. The latter is described by Tαβ

W+V
.

(f) The leptons stem from W+ emission from a quark line, accompanied by t-channel

W−V →µ−ν̄µ scattering, described by Tαβ

W−V
.

The propagator factors 1/(q2 − m2
V + imV ΓV ) are included in the definitions of the sub-

amplitudes introduced above, which we call “leptonic tensors” in the following.

The explicit structure of one of these leptonic tensors is given in figure 2, where we

have plotted the Feynman diagrams contributing to Tαβ

W+V
: a virtual W+ and a virtual γ

or Z fuse into a final state e+νe lepton pair, and the sub-amplitude corresponding to these

three graphs is the leptonic tensor Tαβ

W+V
which appears in graphs like figure 1 (e).

For each charged-current process, such as us→ dc e+νe µ−ν̄µ or dc→us e+νe µ−ν̄µ,

there are 92 Feynman graphs. The different topologies are completely analogous to the

ones for neutral current processes: simply interchange the t-channel bosons γ, Z ↔ W

in figure 1. The only new tensor structure that occurs is Tαβ

W+W− , which describes the

sub-amplitude for W+W−→ e+νe µ−ν̄µ. The corresponding Feynman graph topology is

depicted in figure 3.

By crossing the external quark lines, one either obtains anti-quark initiated t-channel

processes like ūc→ūc e+νe µ−ν̄µ (which we fully take into account in our calculation) or

one arrives at NC or CC s- or u-channel exchange between the two quark lines, which we

count as the other four classes of jje+νe µ−ν̄µ processes:

- s-channel exchange leads to diagrams where all the virtual vector bosons are time-like.

They correspond to diagrams called conversion, Abelian and non-Abelian annihilation

in ref. [18], and contain vector-boson production with subsequent decay into pairs of

fermions.
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Figure 3: Contribution from W+W− fusion to the scattering process us→ dc e+νe µ−ν̄µ. The

tensor T αβ

W+W−
contains all the tree-level diagrams contributing to the process W+W−→ e+νe µ−ν̄µ,

where α and β are the tensor indices carried by the W+ and W− vector bosons, respectively.

- u-channel exchange occurs for diagrams obtained by interchange of identical initial-

or final-state (anti)quarks, such as in the uu→uu e+νe µ−ν̄µ subprocess.

In our calculation, we have neglected contributions from s-channel exchange completely. In

addition, any interference effects of t-channel and u-channel diagrams are neglected. This

is justified because, in the phase-space region where VBF can be observed experimentally,

with widely-separated quark jets of very large invariant mass, the neglected terms are

strongly suppressed by large momentum transfer in one or more weak-boson propagators.

Color suppression further reduces any interference terms. In ref. [8] we have checked that,

for the analogous process pp→W/Z jj, the contribution from the two neglected classes and

from interference effects accounts for less than 0.3% of the total cross section, at leading

order. Since we expect QCD corrections to the neglected terms to be modest, the above

approximations are fully justified within the accuracy of our NLO calculation.

2.2 Real corrections

The real-emission corrections to EW W+W−jj production with a gluon in the final state

are obtained by attaching one gluon to the quark lines in all possible ways. There are 836

graphs in the case of neutral-current processes and 444 for the charged-current ones.

The contributions with an initial-state gluon are obtained by crossing the previous dia-

grams, promoting the final-state gluon as incoming parton, and an initial-state (anti-)quark

as final-state particle. We again remove all diagrams where all electroweak boson propa-

gators are time-like. Such diagrams, for consistency, must be removed since we have not

considered the corresponding Born contributions, namely the s-channel diagrams corre-

sponding to triple weak-boson production. These diagrams are strongly suppressed when

VBF cuts (see section 4) are applied to the final-state jets.

In the regions of phase space where soft and collinear configurations can occur, we

encounter singularities in the phase-space integrals of the real-emission squared amplitudes.

The regularization of these singularities in the dimensional-regularization scheme, with

space-time dimension d = 4 − 2ε, and the counter-terms which are needed to get finite

expressions within the subtraction method, are discussed extensively in the literature (see,

for example, [19]). Since these divergences only depend on the color structure of the
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external partons, the subtraction terms encountered for EW W+W−jj production are

identical in form to those found for Higgs boson production in VBF [7] and for EW V jj

production [8]. The integration over the singular counter-terms yields, after factorization

of the parton distribution function, the contribution

〈I(ε)〉 = |MB |2
αs(µR)

2π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
2

ε2
+

3

ε
+ 9 − 4

3
π2

]
. (2.1)

Here, the notation of ref. [19], but adapted to dimensional reduction, has been used. MB

denotes the amplitude of the corresponding Born process and Q2 is the momentum transfer

between the initial and final state quark in figure 1. These singular terms are eventually

cancelled by the virtual corrections, when infrared-safe quantities are computed.

2.3 Virtual corrections

As for the real-radiation cross sections, the divergences that affect the virtual gluon con-

tributions depend on the color structure of the external partons. The main difference with

Hjj and V jj production is that the finite parts of the virtual corrections are more com-

plicated for the present case, since the previous two processes only sport vertex and box

corrections, while now we have to deal with pentagon-type loop integrals.

The QCD corrections to EW W+W−jj production appear as two gauge-invariant

subsets, corresponding to gluon emission and reabsorption on either the upper or the lower

fermion line in figure 1. Due to the color-singlet nature of the exchanged electroweak

bosons, any interference terms of the Born amplitude with virtual sub-amplitudes with

gluons attached to both the upper and the lower quark lines vanish identically at order αs.

Hence, it is sufficient to consider radiative corrections to a single quark line only, which we

here take as the upper one. Corrections to the lower fermion line are an exact copy. We

have regularized the virtual corrections in the dimensional reduction scheme [20]: we have

performed the Passarino-Veltman (PV) [21] reduction of the tensor integrals in d = 4− 2ε

dimensions, while the algebra of the Dirac gamma matrices, of the external momenta and

of the polarization vectors has been performed in d = 4 dimensions.

We split the virtual corrections into three classes: the virtual corrections along a quark

line with only one vector boson attached (e.g. diagram (d) in figure 1 or diagrams (a), (b),

(e) and (f) when considering corrections to the lower quark line), the virtual corrections

along a quark line with two vector bosons attached (e.g. diagrams (b), (c), (e), (f)), and the

virtual corrections along a quark line with three vector bosons attached (e.g. diagram (a)).

I. The virtual NLO QCD contribution to any tree-level Feynman amplitude M(i)
B which

has a single electroweak boson V1 (of momentum q1) attached to a quark line,

q(k1)→ q(k2) + V1(q1) , (2.2)

is factorizable in terms of the amplitude for the corresponding Born graph

M(i)
V = M(i)

B

αs(µR)

4π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
− 2

ε2
− 3

ε
+ cvirt + O (ε)

]
. (2.3)
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q1 q2

V1 V2

(c)

k1 k2

q1 q2
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Figure 4: Virtual corrections for a fermion line with two attached vector bosons, V1(q1) and V2(q2).

The finite part of the sum of these graphs defines the reduced amplitude M̃V1V2,τ (q1, q2) of eq. (2.5).

Here µR is the renormalization scale, and the boson virtuality Q2 = −(k1−k2)
2 is the only

relevant scale in the process, since the quarks are assumed to be massless, k2
1 = k2

2 = 0. In

dimensional reduction, the finite contribution cvirt is equal to π2/3− 7 (cvirt = π2/3− 8 in

conventional dimensional regularization).

II. The virtual QCD corrections to the Feynman graphs, where two electroweak bosons

V1 and V2 (of outgoing momenta q1 and q2) are attached to a quark line, are depicted in

figure 4. It suffices to consider one of the two possible permutations of V1 and V2, with

kinematics

q(k1)→ q(k2) + V1(q1) + V2(q2) . (2.4)

Due to the trivial color structure of the tree-level diagram, the divergent part (soft and

collinear singularities) of the sum of the four diagrams in figure 4 is a multiple of the

corresponding Feynman graph at Born level, just like for the vertex corrections,

M(i)
V = M(i)

B

αs(µR)

4π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
− 2

ε2
− 3

ε
+ cvirt

]

+
αs(µR)

4π
CF M̃(i)

V1V2,τ (q1, q2) e2 gV1f1

τ gV2f2

τ + O(ε) , (2.5)

where we define Q2 = 2 k1 · k2, in order to use the same notation as in eq. (2.3). Here τ

denotes the quark chirality and the electroweak couplings gV f
τ follow the notation of ref. [16],

with, e.g., gγf
± = Qf , the fermion electric charge in units of |e|, gWf

− = 1/(
√

2 sin θW ) and

gZf
− = (T3f − Qf sin2 θW )/(sin θW cos θW ), where θW is the weak mixing angle and T3f is

the third component of the isospin of the (left-handed) fermions.
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(e)
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(f)

k1 k2
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V1 V2 V3

(g)
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V1 V2 V3
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Figure 5: Virtual corrections for a fermion line with three attached vector bosons, V1(q1),

V2(q2) and V3(q3). The finite part of the sum of these graphs defines the reduced amplitude

M̃V1V2V3,τ (q1, q2, q3) of eq. (2.7).

A finite contribution of the virtual diagrams, which is proportional to the Born am-

plitude (the cvirt term), is pulled out in correspondence with eq. (2.3). The remaining

non-universal term, M̃(i)
V1V2,τ (q1, q2), is also finite and can be expressed in terms of the

finite parts of the Passarino-Veltman Bij, Cij and Dij functions. The corresponding ana-

lytic expressions were given in ref. [8]. Note that the effective polarization vectors for the

electroweak bosons V1 and V2, which enter the expressions for the M̃(i)
V1V2,τ (q1, q2), are W±

decay currents, the leptonic tensors Γµ
V (for figure 1 (b)) and/or the entire lower parts of

the Feynman graphs for figure 1 (c,e,f), when combining Feynman graphs with identical

topology.

III. The virtual QCD corrections to the Feynman graphs where three electroweak

bosons V1, V2 and V3 (of outgoing momenta q1, q2 and q3) are attached to a quark line,

are depicted in figure 5. It suffices to consider one of the six possible permutations of V1,

V2 and V3, with kinematics

q(k1)→ q(k2) + V1(q1) + V2(q2) + V3(q3) . (2.6)

The trivial color structure of the tree-level diagram allows the factorization of the divergent

part of the sum of the eight diagrams in figure 5 in terms of the corresponding Born sub-
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amplitude

M(i)
V = M(i)

B

αs(µR)

4π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
− 2

ε2
− 3

ε
+ cvirt

]

+
αs(µR)

4π
CF M̃(i)

V1V2V3,τ (q1, q2, q3) e3 gV1f1

τ gV2f2

τ gV3f3

τ + O(ε) . (2.7)

Again, a finite contribution from the virtual diagrams, proportional to the Born amplitude

(cvirt), is pulled out and the remaining finite part is indicated with M̃(i)
V1V2V3,τ (q1, q2, q3).

The factorization of the divergent parts of the various virtual contributions, as multi-

ples of the corresponding Feynman amplitudes at Born level, M(i)
B , implies that the overall

infrared and collinear divergences multiply the complete Born amplitude, MB =
∑

i M
(i)
B .

We can summarize our results for the virtual corrections to the individual fermion lines by

writing the complete virtual amplitude MV as

MV = MB
αs(µR)

4π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
− 2

ε2
− 3

ε
+ cvirt

]

+
αs(µR)

4π
CF e2

∑

i

M̃(i)
V1V2,τ (q1, q2) gV1f1

τ gV2f2

τ

+
αs(µR)

4π
CF e3

∑

i

M̃(i)
V1V2V3,τ (q1, q2, q3) gV1f1

τ gV2f2

τ gV3f3

τ + O(ε)

= MB
αs(µR)

4π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
− 2

ε2
− 3

ε
+ cvirt

]
+ M̃V , (2.8)

where the sums run over the different orderings of the attached weak bosons and the relevant

topologies of figure 1, when using effective polarization vectors for the electroweak bosons,

as discussed below eq. (2.5). Note that M̃V is completely finite. The NLO contribution to

the cross section at order αs comes from the interference of the virtual amplitude with the

Born term. For corrections to a quark line it is given by

2Re [MV M∗
B ] = |MB |2

αs(µR)

2π
CF

(
4πµ2

R

Q2

)ε

Γ(1+ ε)

[
− 2

ε2
− 3

ε
+ cvirt

]
+2Re

[
M̃V M∗

B

]
.

(2.9)

The divergent piece appears as a multiple of the Born amplitude squared and it cancels

explicitly against the phase-space integral of the dipole terms (see ref. [19] and eq. (2.10)

of ref. [7])

〈I(ε)〉 = |MB |2
αs(µR)

2π
CF

(
4πµ2

R

Q2

)ε

Γ(1 + ε)

[
2

ε2
+

3

ε
+ 9 − 4

3
π2

]
, (2.10)

which absorbs the real-emission singularities which are left after factorization of the parton

distribution functions. After this cancellation, all the remaining integrals are finite and

can, hence, be evaluated in d = 4 dimensions.

2.4 Technical details

Our Monte Carlo program computes all amplitudes numerically, using the helicity technique

and the formalism of ref. [16]. For the tree-level and real-emission amplitudes (including
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counter-terms), the method is straightforward, since these contributions are finite at each

phase-space point. The evaluation of the helicity amplitudes is very fast, due to the mod-

ular structure that one achieves by grouping the whole set of diagrams according to the

topologies illustrated in figure 1. The W+→e+νe and W−→µ−ν̄µ decay amplitudes and

the single index leptonic tensors Γα
V (V = Z, γ) are effective polarization vectors which

only depend on the lepton momenta. They are the same for all subprocesses, i.e. they

do not depend on quark flavor or whether quarks and/or anti-quarks scatter. Similarly

the second-rank leptonic tensors Tαβ
V V , Tαβ

W±V
and Tαβ

W+W− are independent of quark flavor

and come in just two kinematic configurations, depending on whether or not an external

gluon is attached to the upper or the lower quark line in figure 1. Correspondingly, the

leptonic tensors are calculated first in our numerical program and then used in crossed

subprocesses and subtraction terms. The code for these leptonic tensors has been gener-

ated with MadGraph and adapted to the tensor structure required for our full program.

We note, in passing, that this approach allows for straightforward inclusion of new physics

effects in the electroweak sector: only the leptonic tensors would be affected by modifi-

cations like anomalous three- or four-gauge-boson couplings or strong electroweak-boson

scattering. One major advantage of the modular strategy is the increase in computational

speed. In the calculation of the real-emission contributions, which constitute the most

CPU-time intensive part of the code, our program is about 70 times faster than a direct

use of MadGraph-generated routines for the individual subprocesses.

Special care has to be taken in the extraction of the finite parts M̃V1V2,τ (q1, q2) and

M̃V1V2V3,τ (q1, q2, q3), which are contained in the full virtual amplitude of eq. (2.8). In order

to keep the expressions small and fast to evaluate, we have implemented the PV tensor

reduction numerically. Here we are adopting a natural extension of the PV notation, and

we call Eij the coefficient functions from the tensor reduction of pentagon integrals. Since

the finite M̃V1V2,τ (q1, q2) and M̃V1V2V3,τ (q1, q2, q3) virtual sub-amplitudes only contain

the finite pieces of the various tensor integrals, one needs to track how the divergent

contributions in the expressions of the scalar integrals feed into the expressions of the tensor

coefficients Bij, Cij , Dij and Eij, and how they generate finite contributions in coefficients

that contain a factor (d − 4) in the numerator. The resulting analytical expression for

M̃V1V2,τ (q1, q2), in terms of finite functions, is given in ref. [8]. We postpone to a future

paper [22] any further technical discussion about the computation of M̃V1V2V3,τ (q1, q2, q3).

3. Checks and implementation in a parton-level Monte Carlo

The cross-section contributions discussed in the previous section have been implemented

in a fully-flexible parton-level Monte Carlo, which is very similar to the programs for

Hjj and V jj production in VBF as described in refs. [7] and [8]. The matrix-element

calculation is divided into three main parts, that deal with the evaluation of the tree-level,

the real-emission and the virtual contributions. All elements have been extensively tested

as detailed below.

Tree-level contribution. We have compared our tree-level code with purely MadGraph

generated output, and we have found agreement with a typical relative accuracy of 10−10.
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Real-radiation contribution. The same comparison has been performed for the real

radiation contributions, with typical agreement at the 10−10 level. In addition, we have

also checked the QCD gauge invariance of the real-emission corrections. More specifically,

the real-emission amplitude for the process qq′→qq′g e+νe µ−ν̄µ has the form

MR = εµ(p)Mµ
R , (3.1)

where p is the momentum of the emitted gluon and εµ(p) its polarization vector. Gauge

invariance demands that the amplitude MR remains unchanged upon the substitution

εµ(p)→ εµ(p) + βpµ (with β arbitrary), that is

pµMµ
R = 0. (3.2)

This relation is satisfied within the numerical accuracy of the program.

Virtual contribution: code checks. As far as the virtual contribution is concerned,

we have implemented two different codes, one analytical, in MAPLE, and one numerical, in

fortran. The analytical code sums all the eight Feynman diagrams in figure 5, which

we call Pµ1µ2µ3
for uncontracted polarization vectors of the three electroweak bosons, and

writes it in terms of the PV coefficient functions, Bij , . . . Eij , in d dimensions. We schemat-

ically represent this tensor reduction by

Pµ1µ2µ3
(k1, q1, q2, q3) =

∑

ij

T (ij)
µ1µ2µ3

(PV)ij , (3.3)

where (PV)ij = {Bij , Cij ,Dij , Eij} is one of the Passarino-Veltman coefficient functions,

and the (finite) tensors T
(ij)
µ1µ2µ3

correspond to spinor products describing the quark lines

in figure 5. The Pµ1µ2µ3
and the (PV )ij still contain divergent contributions. We denote

their finite parts by P̃µ1µ2µ3
, B̃ij, C̃ij, D̃ij , Ẽij , respectively.

The analytic code contains all the recursion relations that can be used to reduce the PV

coefficient functions to combinations of scalar integrals only: B0, C0,D0 and E0 functions.

The E0 function can be further expressed in terms of the sum of five D0 functions, as

described in ref. [23], when d = 4− 2ε, in the limit ε→ 0. The analytic continuation of D0

functions was checked against ref. [24]. The tensor reduction down to scalar integrals, and

the direct substitution of the corresponding expressions computed in d = 4−2ε dimensions

have been used to check the structure of the divergent terms, and to show that, once

contracted with the Born amplitude, they are given by eq. (2.8).

The expression of P̃µ1µ2µ3
in terms of PV coefficient functions is turned by MAPLE into a

fortran code, where care is taken to obtain the correct limit when d→ 4. All the technical

details about this part of the program will be given in ref. [22].

Both the analytical and the fortran code have been checked extensively using gauge

invariance, applied at different levels of complication:

- at the level of the single pentagon loop (diagram (a) of figure 6),

- at the level of the sum of all the virtual corrections along a single quark line, Pµ1µ2µ3
,
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k1 k2

q1 q2 q3

µ1 µ2 µ3

l

(a)

k1 k2

q1 q2

µ1 µ2

(b)

l

Figure 6: Eµ1µ2µ3
(k1, q1, q2, q3) and Dµ1µ2

(k1, q1, q2) of eqs. (3.4)–(3.7).

- and at the level of the entire scattering process (for the fortran code).

To illustrate an example of gauge check, we consider the simpler case of the pentagon loop

of diagram (a) in figure 6

Eµ1µ2µ3
(k1, q1, q2, q3) ≡

∫
ddl

(2π)d
γα 1

l/+ k/1+ q/123

γµ3

1

l/+ k/1+ q/12

γµ2

1

l/+ k/1+ q/1

γµ1

1

l/+ k/1

γα
1

l2
,

(3.4)

where q12 = q1 + q2, q123 = q1 + q2 + q3, k2 = q123 + k1. Gauge invariance is simply the

statement that, upon contracting any one tensor index with the corresponding momentum,

and expressing the contracted gamma matrix as the difference of the two adjacent fermionic

propagators, the pentagon can be reduced to box integrals Dµν (see diagram (b) in figure 6)

qµ1

1 Eµ1µ2µ3
(k1, q1, q2, q3) = Dµ2µ3

(k1, q1 + q2, q3) −Dµ2µ3
(k1 + q1, q2, q3) , (3.5)

qµ2

2 Eµ1µ2µ3
(k1, q1, q2, q3) = Dµ1µ3

(k1, q1, q2 + q3) −Dµ1µ3
(k1, q1 + q2, q3) , (3.6)

qµ3

3 Eµ1µ2µ3
(k1, q1, q2, q3) = Dµ1µ2

(k1, q1, q2) −Dµ1µ2
(k1, q1, q2 + q3) . (3.7)

Using the PV tensor reduction, we can express Eµ1µ2µ3
as a sum of coefficient functions up

to Eij (see eq. (3.3)), and Dµν as sum of coefficient functions up to Dij , and generate the

corresponding fortran code for their finite parts. We can then check that the analytic or

numeric expression for Ẽµ1µ2µ3
, once an external index is contracted with the corresponding

momentum, agrees with the right-hand-sides of eqs. (3.5)–(3.7). Analogous relations hold

at the level of the P̃µ1µ2µ3
which represent the sum of all the virtual corrections along a

single quark line. Both tests are a strong check on the correctness of the entire code.

Finally, we have implemented two independent codes to compute the virtual corrections

for the neutral-current contributions. The relative amplitudes agree within the numerical

precision of the two fortran programs.

Virtual contribution: numerical stability

Gauge invariance has been used not only to check the entire code but is used every time

that a virtual contribution is computed at a given point in phase space. When the diagrams

of figure 5 are contracted with the leptonic currents which represent the W+→e+νe and
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W−→µ−ν̄µ decay amplitudes, the helicity amplitude has the generic form

Jµ1

1 Jµ2

2 P̃µ1µ2µ3
. (3.8)

For example, in the computation of the virtual corrections for the sub-amplitude (a) in

figure 1, we need to evaluate

Jµ1

+ Jµ2

− P̃µ1µ2µ3
(k1, q+, q−, q0) , (3.9)

where J+ is the electronic current from the decay of a W+ with incoming momentum q+,

J− is the muonic current from the decay of a W− with incoming momentum q− and q0

is the incoming momentum of the neutral vector boson. We evaluate this expression by

projecting the four-vectors J± on the respective momenta

Jµ
± = x± qµ

± + rµ
± , (3.10)

in such a way that, in the center-of-mass system of the W+W− pair, the vectors r± have

zero time component

r± · (q+ + q−) = 0 , (3.11)

so that

x± =
J± · (q+ + q−)

q± · (q+ + q−)
. (3.12)

Equation (3.9) then becomes

Jµ1

+ Jµ2

− P̃µ1µ2µ3
(k1, q+, q−, q0) = rµ1

+ rµ2

− P̃µ1µ2µ3
(k1, q+, q−, q0) + box contributions , (3.13)

where we have used eqs. (3.5)–(3.7).

The projections of eqs. (3.10)–(3.13) reduce the magnitude of the coefficients multi-

plying the pentagon loops and their overall contribution to the virtual corrections. This

“true” pentagon contribution to the cross section, defined by the interference of the resid-

ual rµ1

+ rµ2

− P̃µ1µ2µ3
type terms with the Born amplitude, is called σ5 below. Minimizing

it is important in view of the fact that, in the tensor-reduction procedure à la Passarino-

Veltman, Gram determinants appear in the denominators of the PV coefficient functions.

There are points in phase space where these determinants become small and numerical

results become unstable. We have developed a strategy to interpolate over these critical

points (see ref. [22]) and, to make sure that the numerical accuracy is not spoilt, we check,

numerically, that the analogs of eqs. (3.5)–(3.7) are satisfied for the tensors P̃µ1µ2µ3
. In

figure 7 (a) we show the fraction of subprocess events, f (counting pentagon corrections to

the upper and the lower quark line as different subprocesses), where these Ward identities

are violated by more than a fraction δ. Numerical instabilities of δ = 10% or more, for

example, affect about f = 13% of the generated subprocess events. For subprocess events

with Ward identity violations exceeding δ we discard the numerically unreliable M̃V1V2V3

and correct the remaining pentagon contributions by a global factor, 1/(1− f), in order to

compensate for the loss. As demonstrated in figure 7 (b), this procedure leads to a constant

overall pentagon contribution, σ5, when varying δ between 0.001 and 1000. Numerical in-

stabilities become large for δ & 104. For our Monte Carlo runs we choose δ = 0.1. Since the
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Figure 7: Dependence of the pentagon contribution to the cross section on the maximal relative

numerical error, δ, which is allowed for the Ward identities of the residual pentagon diagrams. The

fraction f of subprocess events, where a pentagon subamplitude is discarded for numerical reasons,

is shown in panel (a). Panel (b) gives the pentagon contribution, σ5, to the cross section. Error bars

correspond to the statistical error of the Monte Carlo integration. For comparison, the statistical

error on the overall cross section for a high statistics run with ± 0.06% accuracy is indicated by the

horizontal band.

pentagon contribution amounts to less than 0.5% of the cross section for EW W+W−jj

production with VBF cuts, the error that is induced by this approximation affects our final

NLO results at an insignificant level. For comparison the shaded horizontal band shows

the size of the overall cross-section uncertainty for a high-statistics run, with an overall

statistical error of 0.06%.

The tensor reduction of the box-type virtual contributions is quite stable, numerically.

We have checked that the corresponding Ward identities, derived in a similar way as for

the pentagons, are violated at only one out of 106 phase-space points by more than 1h.

The box- and pentagon-type virtual corrections, the finite M̃V1V2
and M̃V1V2V3

terms

in eqs. (2.8) and (2.9), whose evaluation is cumbersome and time consuming, amount to

less than one percent of the full cross section. Therefore, the statistical error of these

contributions affects the accuracy of the full result only marginally and the number of

Monte Carlo events for the computation of the box and pentagon corrections can be reduced

substantially with respect to the Born cross section and the leading cvirt|MB |2 virtual

contribution in eq. (2.9): in our program, the Monte Carlo statistics is reduced by a factor

16 for the generic box contributions and by a factor 128 for the pentagon contributions after

the projections of eqs. (3.10)–(3.13). These elements, together with the efficient handling

of leptonic tensors and the other speed-up “tricks” described in the previous section, yield

a fast code, which allows us to perform high-statistics runs with small relative errors on

the full NLO cross sections and distributions. For example, it took about five days of CPU
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time on a 3 GHz Pentium 4 PC to obtain an accuracy of 1h on the distributions shown

in the next section.

As discussed in detail in ref. [8], care has to be taken in the treatment of finite-width

effects in massive vector-boson propagators. In order to handle diagrams where vector

bosons decay, like W (p` + pν)→ `(p`) + ν`(pν), a finite vector-boson width ΓV has to be

introduced in the resonant poles of each s-channel vector-boson propagator. However, in

the presence of single- and non-resonant graphs, like (a) and (b) in figure 2, this intro-

duces violations of electroweak gauge invariance in a sub-class of diagrams, which would

hold in the zero-width approximation. In the past, different methods, such as the overall

factor scheme [25] and the complex-mass scheme [26], have been applied to overcome these

problems. We resort to a modified version of the complex-mass scheme, which already

has been used in ref. [8]. We globally replace m2
V with m2

V − imV ΓV , while keeping a

real value for sin2 θW . This prescription has the advantage of preserving the electromag-

netic Ward identity which relates the tree-level triple gauge-boson vertex and the inverse

W propagator [27]. It thereby avoids large contributions from gauge-invariance-violating

terms.

Throughout the calculation, fermion masses are set to zero, because observation of

either leptons or (light) quarks in a hadron-collider environment requires large transverse

momenta and hence sizable scattering angles and relativistic energies. For consistency,

external b- and t-quark contributions are excluded.

We have used a diagonal form (equal to the identity matrix) for the Cabibbo-Kobayashi-

Maskawa matrix, VCKM. This approximation is not a limitation of our calculation. As long

as no final-state quark flavor is tagged (no c tagging is done, for example), the sum over

all flavors, using the exact VCKM, is equivalent to our results, due to the unitarity of the

VCKM matrix.

The VBF cuts, discussed in section 4, force the LO differential cross section for

W+W−jj to be finite, since they require two well-separated jets of finite transverse mo-

mentum. For the NLO contributions, initial-state singularities, due to collinear q→ qg and

g→ qq̄ splitting, are factorized into the respective quark and gluon distribution functions of

the proton. An additional divergence is encountered in those real-emission diagrams, where

a t-channel photon of low virtuality is exchanged, thereby giving rise to a collinear q→qγ

singularity. We avoid it by imposing a cut on the virtuality of the photon, Q2
γ,min = 4 GeV2.

Events that do not pass this cut are considered to be part of the QCD corrections to the

pγ →W+W−jj cross section, that we do not calculate here.

For the computation of cross sections and distributions presented in the following

section, we have adopted the CTEQ6M parton distributions with αs(mZ) = 0.118 at

NLO, and the CTEQ6L1 set for the LO calculation [28]. The CTEQ6 parton distributions

include b quarks as active flavors. However, since in our calculation all fermion masses are

neglected, we have disregarded external b- and t-quark contributions throughout.

We have chosen MZ = 91.188 GeV, MW = 80.423 GeV and GF = 1.166 × 10−5/ GeV2

as electroweak input parameters.1 The other parameters, αQED = 1/132.54 and sin2 θW =

1Technically the Particle-Data-Group mass values adopted in our calculations correspond to a running-
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0.22217, are computed thereof via LO electroweak relations. Final-state partons are recom-

bined into jets according to the kT algorithm [29], as described in ref. [30], with resolution

parameter D = 0.8.

4. Results for the LHC

The parton-level Monte Carlo program described in the previous section has been used to

determine the size of the NLO QCD corrections to the EW W+W−jj cross sections at the

LHC. Using the kT algorithm, we calculate the partonic cross sections for events with at

least two hard jets, which are required to have

pTj ≥ 20 GeV , |yj| ≤ 4.5 . (4.1)

Here yj denotes the rapidity of the (massive) jet momentum which is reconstructed as the

four-vector sum of massless partons of pseudorapidity |η| < 5. The two reconstructed jets

of highest transverse momentum are called “tagging jets”. At LO, they are identified with

the final-state quarks which are characteristic for vector-boson fusion processes.

We consider the specific leptonic final state e+νe µ−ν̄µ. One obtains the cross sections

for the phenomenologically more interesting final state containing any combination of elec-

trons or muons (e+e−νν̄, µ+µ−νν̄, e±µ∓νν̄, but neglecting identical lepton interference

and ZZ final states) by multiplying our cross sections by a factor of 4. In order to ensure

that the charged leptons are well observable, we impose the lepton cuts

pT` ≥ 20 GeV , |η`| ≤ 2.5 , 4Rj` ≥ 0.4 , (4.2)

where 4Rj` denotes the jet-lepton separation in the rapidity-azimuthal angle plane. In

addition, the charged leptons are required to fall between the rapidities of the two tagging

jets

yj,min < η` < yj,max . (4.3)

Backgrounds to VBF are significantly suppressed by requiring a large rapidity separation

of the two tagging jets. We here impose the cut

∆yjj = |yj1 − yj2| > 4 . (4.4)

Furthermore, we require the two tagging jets to reside in opposite detector hemispheres,

yj1 × yj2 < 0 , (4.5)

with an invariant mass

Mjj > 600 GeV . (4.6)

The resulting total cross section receives two major contributions, arising from the Higgs

resonance, via H→WW decays, and from the WW continuum, which effectively starts

width scheme instead of the fixed-width scheme, which underlies the complex-mass scheme. However, these

differences are irrelevant here, since we are working to LO in electroweak interactions.
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Figure 8: Scale dependence of the total jj e+νe µ−ν̄µ cross section at leading and next-to-leading

order within the cuts of eqs. (4.1)–(4.7) for pp collisions at the LHC. The contribution from the

Higgs resonance (taken as mH = 120GeV) is excluded. The factorization scale µF and/or the

renormalization scale µR are taken as multiples of the W mass, ξ mW , and ξ is varied in the range

0.1 < ξ < 10. The NLO curves are for µF = µR = ξmW (solid red line), µF = mW and µR = ξ mW

(dashed green line) and µR = mW and µF variable (dot-dashed blue line). The dotted black curve

shows the dependence of the LO cross section on the factorization scale. At this order, there is no

dependence on αs(µR).

at the W -pair threshold. Already for Higgs boson masses as low as 120 GeV, the reso-

nance contribution is quite noticeable and, because of the strong dependence on mH of the

H→WW branching ratio, this resonance contribution is strongly dependent on the Higgs

mass. When trying to show results for the WW continuum only, we therefore impose the

additional requirement

mWW =
√

(pe + pµ + pνe
+ pνµ

)2 > mH + 10 GeV , (4.7)

i.e. the four-lepton invariant mass must be above the Higgs resonance. The resulting cross

section is representative of the continuum above any light Higgs boson resonance (mH

below the W -pair threshold).

The scale dependence of the total continuum cross section, for a Higgs boson mass of

mH = 120 GeV, is shown in figure 8. This figure shows the scale dependence of the LO

and NLO cross sections, for renormalization and factorization scales, µR and µF , which

are tied to the W mass

µR = ξR mW , µF = ξF mW . (4.8)
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Figure 9: Higgs mass dependence of the total pp→ jj e+νe µ−ν̄µ cross section at LO and NLO

within the cuts of eqs. (4.1)–(4.6). Results are shown for renormalization and factorization scales

µ = 0.5 mW , mW and 2 mW .

The LO cross section only depends on the factorization scale. At NLO we show three

cases: (a) ξF = ξR = ξ (solid red line); (b) variation of the factorization scale only, ξF = ξ,

ξR = 1 (dot-dashed blue line); and (c) variation of the renormalization scale only ξR = ξ,

ξF = 1 (dashed green line). The NLO cross sections are quite insensitive to scale variations:

allowing a factor 2 variation in either directions, i.e. considering the range 0.5 < ξ < 2, the

NLO cross section changes by less than 2% in all cases. Compared to this small variation,

the factorization scale dependence of the LO cross section is quite sizable, amounting to

a ±10% shift for 0.5 < ξ < 2. Note that for µF = mW the LO cross section is only very

slightly larger than the more stable NLO result, yielding a K factor K = σNLO/σLO = 0.98,

i.e. µF = mW is an excellent choice for a LO estimate of the total continuum cross section.

Also for larger Higgs boson masses, mH & 2mW , the reduction of the scale dependence

at NLO is comparable to the light Higgs case. However, since the resonance contribution

can no longer be trivially separated from the WW continuum, we now show, in figure 9, the

total cross section within the cuts of eqs. (4.1)–(4.6) as a function of mH and for different

scale choices, µ = ξmW with ξ = 0.5, 1 and 2. At NLO, the scale dependence is hardly

visible while at LO one again finds a sizable factorization scale dependence.
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Figure 10: Transverse-momentum distribution of the highest-pT tagging jet in EW W+W−jj

production at the LHC. In panel (a) the NLO result (solid red line) and the LO curve (dashed

black line) are shown. Their ratio, the K factor as defined in eq. (4.9), is shown in panel (b).

The small scale dependence which is observed for the total cross section at NLO is also

found for infrared-safe distributions. Typically, scale variations between 0.5mW and 2mW

change distributions by about 2%, with somewhat larger variations, up to 6%, sometimes

occurring in the tails of the distributions shown below.

The K factor close to unity, which was found for the total cross section, no longer

persists for distributions. We demonstrate this effect by showing a few experimentally

relevant distributions together with the dynamic K factor which is defined as

K(x) =
dσNLO/dx

dσLO/dx
. (4.9)

In the following the Higgs boson mass is taken as mH = 120 GeV and we show cross

sections for the continuum above mWW = 130 GeV and within the cuts of eqs. (4.1)–(4.7).

All panels are for the scale choice µF = µR = mW .

A fairly strong shape change in going from LO to NLO is found for the tagging-jet

transverse-momentum distributions. This is shown in figures 10 and 11 where the larger

and the smaller of the two tagging-jet transverse momenta are shown at LO (dashed black

curves) and at NLO QCD (solid red lines), together with their ratio, the K factor of

eq. (4.9). In particular the former, dσ/dpmax
T,tag, shows a clear shift to smaller transverse

momenta at NLO, which corresponds to a K factor varying between 1.2 and 0.8 as pmax
T,tag

increases from 20 GeV to 400 GeV. The effect for dσ/dpmin
T,tag, in figure 11, is slightly smaller,

but still pronounced. The change in the jet transverse-momentum distribution also feeds

into the shape of the lepton transverse-momentum distributions. In figure 12 we depict the

transverse momentum for the hardest of the two charged leptons. Again small transverse

momenta are enhanced at NLO, leading to a K factor between 1.04 and 0.84.
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Figure 11: Same as figure 10 but for the smaller of the two tagging-jet transverse momenta.

Figure 12: Transverse-momentum distributions of the hardest final-state lepton in EW W+W−jj

production at the LHC. In panel (a) the NLO result (solid red line) and the LO curve (dashed black

line) are shown. Their ratio, the K factor as defined in eq. (4.9), is shown in panel (b).

In contrast to the transverse momentum distributions, angular distributions of the lep-

tons are hardly affected by the NLO corrections. As an example, we show the azimuthal

angle between the two charged leptons in figure 13. The K factor is almost constant

and equal to 0.98. The typically large angle between the charged leptons is important

for the reduction of W+W−jj continuum events in the search for H→WW→l+l−p/T de-

cays [4].

Another distribution which is important for the Higgs search at the LHC is the trans-
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Figure 13: Azimuthal angle separation between the two charged leptons for continuum

jje+νe µ−ν̄µ events at the LHC. Curves are as in figure 10.

Figure 14: Transverse mass distribution for the e+νe µ−ν̄µ system in W+W−jj events at the

LHC. Curves are as in figure 10. The definition of MWW
T is given in eq. (4.10).

verse mass of the l+l−νν̄ system, which is defined as [4]

MWW
T =

√
(E/ T + ET,ll)2 − (pT,ll + p/T )2 , (4.10)

where the transverse energies are given by

ET,ll =
√

p2
T,ll + m2

ll ,

E/T =

√
p/2

T + m2
νν ≈

√
p/2

T + m2
ll . (4.11)
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While the invariant mass of the W+W− pair cannot be reconstructed, due to the presence

of neutrinos, MWW
T is fully accessible. The effect of NLO QCD corrections on MWW

T is

again modest, as can be seen in figure 14.

5. Conclusions

Vector-boson fusion at the LHC represents a class of electroweak processes which are under

excellent control perturbatively. This has been known for some time for the most interesting

process in this class: Higgs boson production via VBF has a modest K factor of about

1.05 for the inclusive production cross section [31] and this result also holds when applying

realistic acceptance cuts [7]. Similar results were also found for Wjj and Zjj production

via VBF [8].

In the present paper, we have extended these calculations to the electroweak process

pp→ e+νe µ−ν̄µ jj at NLO in QCD, when the final-state particles are in a kinematic config-

uration typical of VBF events. This corresponds to leptonic final states in the vector-boson

scattering processes V V →W+W− (V is a γ or a Z) and W+W−→W+W−, but with full

NLO QCD simulation of the associated tagging jets. The calculation has been implemented

in the form of a fully-flexible parton level Monte Carlo program and, thus, allows to im-

plement completely general experimental cuts. The size of the QCD corrections is similar

to those found for Hjj and V jj production in VBF, and corresponds to a shift of a few

percent in typical integrated cross sections expected for VBF cuts. Some distributions,

however, are affected somewhat more strongly, with dynamical K factors ranging between

0.8 and 1.2, in particular for transverse-momentum distributions. At least as important is

the stability of the NLO result: the residual scale dependence is at the 2% level for cross

sections integrated within VBF cuts.

The numerical code is quite fast, reaching permille level statistics on distributions

within 5 days of running on a standard 3 GHz PC. A 1h error on integrated cross sections

is reached in about 1 day. This high speed has been obtained by avoiding the recalculation

of recurring subamplitudes in different sub-processes contributing at a given phase-space

point. A key ingredient is a modular structure of the numerical amplitude calculation

which separates the weak-boson scattering sub-amplitudes into leptonic tensors, which can

be changed without altering the validity of the QCD corrections. Such changes could

reflect the inclusion of anomalous three- or four-vector-boson couplings or of any other

new physics in weak-boson scattering. We leave such generalizations for the future.
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